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bromic acid (450 mL, 48%). The mixture was heated for 1 h at 80 0C, 
diluted with water (2.5 L), and stirred at room temperature for 16 h to 
allow complete precipitation of the product. The precipitate was removed 
by filtration, washed with water, and recrystallized from aqueous ethanol 
to give 4-chloro-2,6-dinitrobromobenzene as a yellow crystalline solid 
(25.5 g): mp 98-99 0C; NMR (acetone-rf6) S 8.38(s At-H). 

A mixture of 4-bromoiodobenzene (10.5 g), 4-chloro-2,6-dinitro-
bromobenzene (5 g), and copper powder (20 g) was heated in a sealed 
reaction bomb for 3 h at 170 0C. At higher temperatures or with a 
higher proportion of 4-chloro-2,6-dinitrobromobenzene in the reaction 
mixture, the mixture decomposed explosively. The mixture was extracted 
exhaustively with chloroform and removal of the solvent afforded a crude 
product (9.7 g) which was purified by column chromatography on alu­
mina (600 g). Elution with light petroleum afforded unreacted 4-
bromoiodobenzene (6 g). Elution with light petroleum/ether (75:25) and 
crystallization from methanol afforded 4'-bromo-4-chloro-2,6-dinitrobi-
phenyl (8.1 g, 65%): mp 102-103 0C; UV (methanol) 228 (4.45) nm; 
IR (chloroform solution) 3080 (m b), 1540 (s b), 1490 (m s), 1450 (m 
s), 1420 (m b), 1370 (s b), 1280 (m b), 1180 (m s), 1105 (w s), 1080 (m 
s), 1025 (m s), 1010 (s s), 925 (m s), 890 (s s), 830 (s s), 710 (m b) cm"1; 
NMR (acetone-</6) 6 8.418 (2 H, s, #-3,5), 7.3-7.8 (4 H, AA'BB', S2, 
= S6, = 7.357, S1, = S5, = 7.689, J2,3, = Jy6, = 8.37 Hz, Jri, = Jy6, = 0.56 
Hz, J2,s, = 2.21 Hz, JyS, = 2.19 Hz); mass spectrum, m/e (relative 
intensity) 360 (17), 359 (10), 358 (76), 357 (11), 356 (55), 277 (14), 185 
(24), 174 (30), 150 (100), 75 (52). 

Anal. Calcd for C12H6BrClN2O4: C, 40.3; H, 1.7; Br, 22.4; Cl, 9.9; 
N, 7.8; O, 17.9. Found: C, 40.3; H, 1.8; Br, 22.3; Cl, 9.9; N, 7.8; O, 
0.0. 

4'-Bromo-4-chloro-2,6-dinitrobiphenyl (8.1 g) was dissolved in a 
mixture of ethanol (50 mL) and hydrochloric acid (30 mL, 10 M) and 
heated under reflux with granulated tin (30 g) for 1 h. The solution was 
diluted with water (100 mL), and most of the ethanol was removed under 
vacuum. The mixture was basified with sodium hydroxide, filtered, and 
extracted with ether (4 X 50 mL). The combined organic phases were 
extracted with hydrochloric acid (2 x 50 mL, 3 M). The aqueous phase 
was basified and extracted with ether (3 x 50 mL). Workup in the usual 
manner afforded crude 2,6-diamino-4'-bromo-4-chlorobiphenyl as a light 
brown crystalline solid (4.1 g, 65%) which was used without further 
purification. 

The diamine (4.1 g) was dissolved in tetrafluoroboric acid (15 mL, 
40%), heated to 80 0C, and cooled to -5 0C. A solution of sodium nitrite 
(0.8 g) in water (3 mL) was cooled to 0 °C. The two solutions were 
added simultaneously to tetrafluoroboric acid (15 mL), keeping the so­
dium nitrite always slightly in excess and the temperature below 0 0C. 
The yellow precipitate was collected and dried at the pump, washed with 
0.5 mL of chilled water, and dried overnight under vacuum. The dry 
tetrazonium bis(tetrafluoroborate) salt (1.2 g) was mixed with an equal 
volume of dry sand, placed in a long (20 cm) Pyrex test tube fitted with 
a water condenser, and heated with a flame until the evolution of white 
BF3 fumes ceased. The products distilled from the reaction mixture and 
condensed on the walls of the reaction vessel. The reaction mixture was 
extracted with ether, the extracts were washed with a solution of sodium 
carbonate (50 mL, 10%), and the solvent was removed. The residue was 
taken up in light petroleum and filtered through a column of alumina. 
Removal of the solvent afforded crude 4'-bromo-4-chloro-2,6-difluoro-
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biphenyl (310 mg, 24%) of approximately 90% purity by NMR and 
GLC. A sample was purified further by preparative GLC at 160 0C 
(OV17, 3%, packed on Gas Chrom-Q, 45-60 mesh, 10 mm X 1.5 m) to 
give colorless needles (TM = 7 min): mp 75-76 0C; UV (methanol) 249 
(4.39) nm; IR (chloroform solution) 1700 (m b), 1620 (s s), 1590 (m s), 
1570 (m s), 1510 (m s), 1465 (s s), 1425 (m s), 1410 (m s), 1360 (m b), 
1260 (m b), 1190 (m b), 1090, (m b), 1040 (s s), 1010 (m s), 895 (m 
s), 850 (m s), 830 (m s) cm-1; NMR (acetone-</6), see text; mass spec­
trum, m/e (relative intensity) 307 (2), 306 (24), 305 (18), 304 (100), 303 
(14), 302 (73), 189 (11), 188 (91), 187 (8), 186 (7), 94 (25). 

Anal. Calcd for C12H6BrClF2: C, 47.5; H, 2.0; Br, 26.3; Cl, 11.7; F, 
12.6. Found: C, 47.4; H, 2.15; Br, 0.0; Cl, 0.0; F, 12.6. 

4-Bromo-2,6-dicbloro-4-nitrobiphenyl (1, X = CL Y = NO2, Z = Br). 
A mixture of 4-bromoiodobenzene (9.5 g), 2.6-dichloro-4-nitroiodo-
benzene (6.2 g), and copper powder (15 g) was heated in a sealed reac­
tion bomb at 195 0C for 3 h. The mixture was cooled and extracted 
exhaustively with chloroform. The solvent was removed, and the crude 
product was purified by column chromatography (alumina, 100 g). 
Elution with light petroleum removed nonpolar components. Elution with 
light petroleum/ether (99:1) and crystallization from light petroleum 
gave 4'-bromo-2,6-dichloro-4-nitrobiphenyl as a pale yellow crystalline 
solid (2.6 g, 39%): mp 115-117 0C; UV (methanol) 221 (4.50), 278 (b, 
3.92) nm; IR (chloroform solution) 3090 (m s), 1590 (m s), 1510-1540 
(s b), 1490 (s s), 1420 (m s), 1400 (s s), 1360 (s s), 1190 (m s), 1160 
(s s), 1080 (s s), 1020 (m s), 1010 (s s), 910 (m s), 895 (s s), 830 (m s), 
810 (s s), 710 (m s) cm-1; NMR (acetone-</6), see Table IV; mass 
spectrum, m/e (relative intensity) 349 (55), 348 (16), 347 (100), 345 
(75), 222 (45), 220 (64), 185 (17), 173 (10), 150 (52), 75 (18). 

Anal. Calcd for C12H6BrCl2NO2: C, 41.5, H, 1.7; Br, 23.0, Cl, 20.4; 
N, 4.0. Found: C, 41.8; H, 1.9; Br, 22.2; Cl, 20.2; N, 3.4. 

2,6-Dichloro-4-fiuoro-4-nitrobiphenyl (1, X = Cl, Y = NO2, Z = F). 
A mixture of 4-fluoroiodobenzene (4.5 g), 2,6-dichloro-4-nitroiodo-
benzene (3 g), and copper powder (10 g) was heated in a sealed reaction 
bomb at 195 0C for 3 h. The mixture was cooled and extracted ex­
haustively with chloroform. The solvent was removed, and the crude 
product was purified by column chromatography (alumina) with light 
petroleum/ether mixtures as eluant. Recrystallization from methanol 
afforded 2,6-dichloro-4'-fluoro-4-nitrobiphenyl as a pale yellow crystalline 
solid (600 mg, 22%): mp 108-110 C; UV (methanol) 219 (4.38), 263 
(4.14), 268 (4.16), 276 (4.16) nm; IR (chloroform solution) 3100 (m b), 
3020 (w b), 1600 (s s), 1540-1500 (s b), 1450 (m s), 1425 (m s), 1395 
(s s), 1360 (s b), 1250 (s s), 1180 (m s), 1100 (m s), 1020 (w s), 1010 
(w s), 905 (w s), 890 (s s), 840 (s s), 810 (s s) cm"1. NMR (acetone-</6), 
see Table IV; mass spectrum, m/e (relative intensity) 289 (10), 288 (8), 
287 (65), 286 (13), 285 (100), 257 (14), 255 (16), 229 (5), 227 (10), 206 
(28), 205 (12), 204 (94), 169 (20), 168 (20). 

Anal. Calcd for Ci2H6Cl2FNO2: C, 50.4; H, 2.1; Cl, 24.8; F, 6.6; N, 
4.9; O, 11.2. Found: C, 50.2; H, 2.2; Cl, 25.0; F, 6.7, N, 4.7; O, 0.0. 
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and bond angles of the reactants and by fluctuations in the sur­
rounding solvent. In many systems the inner-sphere changes are 
very small, so that the reaction is controlled by fluctuations in 
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Table I. Structural and Spectroscopic Data" 

Co(NH3V+ Co(NH3),3+ Ru(NH3V+ R U ( N H X 

M-N bond 2.114 1.936 2.144 2.104 
length, A 

ha> (A16), 357 494 350 500 
cm"1 

hw (Eg) 255 442 
hu> (F) 325 475 
hw (F) 192 331 
hcj (F) 187 322 
hw (F) 143 246 
^outer> 

kj/mol 
117 113 

0 Reference 5. Symmetries are for an effective octahedral 
geometry. 

reactant product 

Figure 1. Model harmonic potentials for electron transfer vs. a gener­
alized configuration coordinate <j.9 

the solvent polarization (e.g., Ru(NH3)6
3+''2+ia and Cr(2,2'-bi-

pyridyl)3
3+/2+ 3). On the other hand, some redox systems involve 

substantial internal reorganization (e.g., Fe(H2O)6
3+^2+2 and 

Co(NH3)6
3+/2+4). In such systems inner-sphere effects are im­

portant. 
In this paper we briefly describe classical, semiclassical, and 

quantum theories of electron transfer. It has been suggested that 
reactions in which inner-sphere reorganization is important are 
not adequately described by classical theory but require a quantum 
mechanical treatment.5'6 A quantum mechanical treatment is 
available for nonadiabatic electron transfers and was developed 
at first for the solvent modes7 and later for the bond vibrations.6,8'9 

We discuss the nature and magnitude of quantum effects in 
the particular cases of the very slow hexaamminecobalt self-ex­
change reaction, the hexaaquoiron self-exchange reaction, the 
hexaammine ruthenium self-exchange reaction, and the Fe2+-
Ru(bpy)3

3+ cross-reaction. 
It is expected that if nuclear tunneling is to be important, it 

will be so for systems in which a high-frequency mode undergoes 
a significant displacement. For example, in the hexaamminecobalt 
self-exchange reaction the equilibrium position of the symmetric 

( I )H . Stynes and J. Ibers, Inorg. Chem., 10, 2304 (1971). 
(2) N. Sutin in "Tunneling in Biological Systems", B. Chance, D. C. 

DeVault, H. Frauenfelder, J. R. Schrieffer, and N. Sutin, Eds., Academic 
Press, New York, 1979. 

(3) C. Creutz and N. Sutin, / . Am. Chem. Soc, 99, 241 (1977). 
(4) D. Stranks, Discuss. Faraday Soc, 29, 116 (1960). 
(5) E. Buhks, M. Bixon, J. Jortner, and G. Navon, Inorg. Chem., 18, 2014 

(1979). 
(6) (a) N. Kestner, J. Logan, and J. Jortner, / . Phys. Chem., 78, 2148 

(1974); (b) J. Ulstrup and J. Jortner, / . Chem. Phys., 63, 4358 (1975). 
(7) (a) V. G. Levich and R. R. Dogonadze, Collect., Czech. Chem. Com-

mun., 26, 1934 (1961); Translator, O. Bosko, University of Ottawa, Ontario, 
Canada, (b) V. Levich in "Physical Chemistry: An Advanced Treatise", Vol. 
9B, H. Eyring, D. Henderson, and W. Jost, Eds., Academic Press, New York, 
1970. 

(8) (a) R. R. Dogonadze and A. M. Kuznetsov, Elektrokhimiya 3, 1324 
(1967); Sov. Electrochem. (Engl. Transl.), 3, 1189 (1967); (b) R. R. Do­
gonadze, A. M. Kuznetsov, and M. A. Vorotyntsev, Phys, Status Solidi B, 
54, 125, 425 (1972); (c) R. Van Duyne and S. Fischer, Chem. Phys., 5, 183 
(1974); (d) S. Efrima and M. Bixon, ibid., 13, 447 (1976); (e) J. Jortner, 
/ . Chem. Phys., 64, 4860 (1976). 

(9) (a) R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960); (b) Ann. Rev. 
Phys. Chem. 15, 155 (1964). 
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stretching mode, has «= 431 cm"1, is displaced by 0.18 A (cf. Table 
I), and in electron-transfer reactions in which an electronically 
excited bipyridyl complex is quenched, a ring mode, hoi » 1300 
cm"1, undergoes a substantial equilibrium displacement. 

Nuclear tunneling will, other things being equal, be more im­
portant for high rather than for low-frequency modes as one can 
see from the nature of harmonic oscillator eigenstates. We 
consider for illustration purposes the one-dimensional model 
surface sketched in Figure 1. Nuclear tunneling depends on the 
overlap of reactant and product wave functions in the classically 
nonallowed region, and therefore is directly related to the am­
plitude of the reactants' wave function in the region q > b. This 
wave function extends further into the classically forbidden region, 
for any given energy, the higher the vibration frequency. It follows 
that tunneling from a state of given energy is more probable for 
a high-frequency mode than for a low-frequency mode, at a given 
energy. 

In the present paper it is found that for the reaction rate 
constant a reasonable order of magnitude estimate for the con­
tribution of configurational changes of high-frequency quantum 
modes in the first coordination layer, for typical metal-ligand 
frequencies, can be provided by a classical expression.9 

Quantum Treatment 
Franck-Condon Factor. An approximate quantum mechanical 

rate expression based on the golden-rule transition probability has 
been derived for electron transfer systems in the nonadiabatic 
limit.6"8,10 Within the Condon approximation the transition 
probability in this expression involves the product of the square 
of an electron-exchange integral and a thermally weighted sum, 
G, of vibrational Franck-Condon factors (eq 1), where Q is the 

G = ^EZe-E^kT\(n\m)\MEn- En ,) (D 

reactants' (vibrational) partition function and n and m designate 
initial and final vibronic states, respectively. En and En, are initial-
and final-state energies. £„vib is the initial-state vibrational energy; 
|«) and \m) are treated as harmonic oscillator eigenfunctions, equal 
to a product over the system's degrees of freedom of single-mode 
harmonic oscillator functions. 

The single-mode harmonic oscillator overlap integrals required 
for evaluating G directly by the sum of eq 1 have been known for 
many years.11"15 The expressions used in this work for these 
integrals are presented in the Appendix (eq Al and A2) in terms 
of /= iii'/w,w' and oi being the frequencies associated with \m) 
and \n), respectively, and in terms of the dimensionless change 
X{l2 in equilibrium coordinate value from \m) to |«). For a normal 
mode X = F(AQ)2/2hoi, where Ag is the change in the normal 
coordinate, w/2ir is the vibration frequency, and F is the force 
constant for the mode (w2 = F). 

In the case of X ^ 0 but «' = oi, one obtains the well-known 
limiting form14 for n > m 

(n\m) = X(-n-m)'2(m\/n\y/2e-x/1Lm
n-m (X) (2) 

where L is an associated Laguerre polynomial. For n < m we 
have |(n|w)| = |(m|n)| and then use eq 2 with m and n inter­
changed. 

An approximate simple formula for the multimode case has 
also been derived elsewhere, together with limitations on its va­
lidity.16 This relation was applied there to the hexaaquoiron 

(10) (a) P. P. Schmidt, Electrochemistry, 5, 21 (1975). (b) J. Ulstrup, 
"Charge Transfer Processes in Condensed Media, Lecture Notes in 
Chemistry", No. 10, Springer-Verlag, New York, 1979. 

(11) E. Hutchisson, Phys. Rev. 36, 410 (1951). 
(12) C. Manneback, Physica (Amsterdam), 17, 1001 (1951). 
(13) T. Keil, Phys. Rev. A, 140, 601 (1965). Equation A3 contains a 

misprint: the value it gives for (In + l\2m + 1 > is too small by a factor of 
2. 

(14) D. Heller, K. Freed, and W. Gelbart, J. Chem. Phys., 56, 2309 
(1972); K. F. Freed, Topics Appt. Phys., 15, 128 (1976). 

(15) M. Prais, D. Heller, and K. Freed, Chem. Phys., 6, 331 (1974). 
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self-exchange reaction and to the Fe2+-Ru(bpy)3
3+ cross-reaction 

and shown to give good agreement with the exact quantum val­
ues.26 

Quantum Treatment of the Solvent. The interaction of the 
solvent with the reactant ions is implicitly included in eq 1 as a 
set of one or more harmonic modes. Usually only a single fre­
quency, fta>! = 1 cm"1, is used in calculations.6*'86,17 However, 
in view of the significant decrease in the real part of the dielectric 
constant of water at 170 cm"1 (and the corresponding peak in the 
imaginary part)18,19 we have chosen to use a two-frequency 
quantum description of the solvent interaction: Hw1 = 1 cm"1 and 
hdi2

 = 170 cm"1. A dielectric dispersion in the solvent was first 
treated for electron transfer by Ovchinnikov and Ovchinnikova.20 

As a first approximation for this two-frequency description we 
divide the outer-sphere reorganization energy into two parts, 
writing X011,, which is 4 times the solvent reorganization energy,21 

as 

X0U. = Xi + X2 (3) 

where 

\<ir e o p / / \ «s «op/ 

(ta = 5.019 = real part of the dielectric constant on the "plateau" 
between 1 and 170 cm"1; es = 78.319 = static dielectric constant; 
top= 1.78» = «D

2). 
Thus, the quantum treatment of the solvent interaction (the 

solvent is taken to be aqueous in this paper) involves two harmonic 
modes included in the degrees of freedom of the system. In 
performing the quantum mechanical calculation for the solvent 
eq 2 was again used but X was obtained in the following manner. 
It is first recalled that for an internal normal mode i of the 
reactants Xh which equals F1 (Ag,)2/2fta>,-, can be rewritten as 
Xj/huj, since9 X,- = Fj(AQ1)

2/!. By analogy, we use for X for the 
solvent X1/ftW1 and X2/fta>2 where X1 and X2 have been defined 
in eq 3 and 4. The numerical values employed for X1>2 are given 
later in the paper, while ftwli2 are given above. 

Saddle-Point Method. For a system having several vibrational 
normal modes of different frequencies, the direct evaluation of 
eq 1 can require considerable computing time. However, G can 
easily be evaluated approximately by replacing the 5 function in 
eq 1 by its Fourier integral representation and then using the 
saddle-point method. After some manipulations23'24 one obtains 

G = (2TQ)-1 f'e-Mi+nt) df (5) 

and, after using the saddle-point method to approximte the in­
tegral, one obtains eq 6, 

G « |2irf"a0)r
1/2£rVi'i£'°+f<,°> (6) 

(16) Equation 19 of ref 26. The condition for the validity of this eq 19 
is given by eq 21 there. 

(17) R. R. Dogonadze, A. M. Kuznetsov, and A. A. Chernenko, Usp. 
Khimi, 34, 1779 (1965); (English translation) Russ. Chem. Rev., 34 759 
(1965). 

(18) D. Draegert, N. Stone, B. Curnutte, and D. Williams, J. Opt. Soc. 
Am., 56, 64 (1966). 

(19) "Water: A Comprehensive Treatise", Vol. 1, F. Franks, Ed., Plenum 
Press, New York, 1972. 

(20) A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. Eksp. Teor. Fiz., 
56, 1278 (1969); Sov. Phys.-JETP (Engl. Transl.), 29, 688 (1969). 

(21) R. A. Marcus, J. Phys. Chem., 72, 891 (1968). 
(22) "Handbook of Chemistry and Physics", CRC Press, Cleveland, Ohio, 

1975. 
(23) J. Markham, Rev. Mod. Phys., 31, 956 (1959). 
(24) (a) S. H. Lin, J. Chem. Phys., 44, 3759 (1966); (b) Theor. Chim. 

Acta, 10, 301 (1968). 

where AE is the energy (endoergicity) of the transition, t0 is the 
stationary phase value of t in the integrand in eq 5, and//", and 
t0 are given in the Appendix. 

In the case of a self-exchange reaction, product modes in the 
oxidized species are equivalent to reactant modes in the reduced 
species so that the formulas simplify considerably.5 In a ther-
moneutral self-exchange reaction, t0 = -ijlkT. For other cases 
eq A6 of the Appendix may be solved numerically, e.g., by iterating 
from the approximate root 

t0 « -i(AE + \)/2kT\ (7) 

where X = IZz-i^ Xy and each X> = 1Z2FJ(AQJ)1. Equation 7 gives 
the exact saddle point in the high-temperature limit, when fre­
quency changes are neglected, and provides a reasonable starting 
point for iteration in other cases. 

Classical Treatment. When all the degrees of freedom of the 
system are treated in the classical limit, hw/2kT^*0, and when 
frequency changes are neglected, eq 5 reduces to eq 8. This 

G = (4TkTX)-1'2 exp[-(A£ + X)2/4A:7^] (8) 

equation is similar in form to the classical expression for G2,4 but 
contains energies rather than free energies. This difference arises 
because eq 5 tacitly assumes zero entropy of reaction, and indeed 
the initial equation, (eq 1), with its assumption of harmonic 
oscillators, does not contain any important AS0 term,25 whereas 
the actual AS0 can be quite large.25 The classically derived 
expression is more general in this respect, since it does not assume 
harmonic oscillations for all motions.26 As defined earlier, X̂  = 
1Z2FJ(AQJ)2 and X = Li-î Xy. It has been shown27 that frequency 
changes may be included in an approximate manner by using an 
average force constant to calculate X,-, rather than using the initial 
force constant. Fj above is an averaged force constant 

Fav = 2FF/(F + F) (9) 

where F and F' are the force constants in the reactant and product 
states, respectively. The classical value of the Franck-Condon 
sum (eq 8) is computed by using X's calculated with average force 
constants given by eq 9. 

"Semiclassical" Treatment.28 Consider first a one-dimensional 
case with a coordinate Q. The 5(E„ - En) of eq 1 can be intro­
duced into I (n\m)\2. When the commutator of the initial and final 
Hamiltonians, Tin and fim is neglected, 8(En - Em) in the integral 
becomes S(1Mn - fim), which in turn is S(Vn - Vn) since the kinetic 
energy terms in Iin and fim cancel; Vn and Vn, are the potential 
energies of the reactants and products, respectively. By using the 
identity Y,m\m)(m\ = 1, we may reduce the thermally weighted 
double sum of squared overlap integrals in eq 1 to a single sum 
over n of (n\6(V„ - Vm)\n) (e.g., see analogous procedure for other 
problems in ref 29). These integrals are readily evaluated, yielding 

(25) The only entropy change present in eq 1 (and hence in eq 5) is the 
minor contribution from inner-sphere frequency changes, whereas the actual 
AS° can be much larger. For reactions in which the set of reactants' vibration 
frequencies equals the set of products' vibration frequencies AS 0 ^ = 0, where 
Ai10Vj1, is the contribution to AS0 from inner-sphere vibration frequency 
changes. AS0 for the Fe2+-Ru(bpy)3

3+ cross-reaction (eq 23) is -180 J mol-1 

K"1.2 A5°,ib for this reaction may be estimated as follows. Symmetric 
stretching frequencies for Fe2+(aq) and Fe3+(aq) are given in the text (389 
and 490 cm-1, respectively). For simplicity we will assume that the ratio of 
a frequency in the reduced state to that in the oxidized state is the same for 
each of the 15 (octahedral) normal modes. Vibration frequencies in the 2+ 
and 3+ oxidation states of Ru(bpy)3 are unknown. If by analogy with Fe-
(bpy)3

2+ (for which at least the symmetric stretching frequency is unchanged 
upon oxidation32*1) it is assumed that the vibration frequencies in the 2+ and 
3+ oxidation states of Ru(bpy)3 are the same, then the Ru(bpy)3

2+/3+ couple's 
vibrations contribute nothing to &S",lb. Using standard equations4* for the 
quantum mechanical vibrational partition functions and for AS", one obtains 
AS0,,,, = -20 J mol"1 K"1 at 300 K, which is only about 10% of the total AS0 

for the reaction. 
(26) R. A. Marcus in "Third International Symposium on Oxidases", T. 

E. King, H. S. Mason, and M. Morrison, Eds., July 1-4, 1979 (1980 in press). 
(27) R. A. Marcus, J. Chem. Phys., 43, 679 (1965). 
(28) (a) J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A., 71, 3640 (1974); 

(b) "Electrical Phenomena at the Biological Membrane Level", E. Roux, Ed., 
Elsevier, Amsterdam, 1977, p 471. 
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a sum of factors proportional to |xB(6)l2. where Q is that value 
of the coordinate for which the reactant and product potential 
energies are equal and %n is the wave function of the reactants. 
The remaining sum over n in eq 1 is then readily evaluated to 
yield29 

G = (2w\hu> coth y)'1'2 exp[-(AF + X)2/(2Xft« coth 7)] 
(10) 

where 7 = hw/2kT and AF and X are defined as in eq 7 but X 
is for the single mode being considered. Equation 10 is the same 
as that obtained in ref. 28 by a different procedure. A detailed 
derivation of eq 10 is given in the appendix. 

For systems having two or more frequencies, one obtains a 
convolution of Gaussians of the form of eq 10. The convolution 
is itself of the form of eq 10, but Xhoi coth 7 must be replaced 
with EjXjhwj coth 7, and X by LA-26,29 

This method of obtaining G's, which originated in the theory 
of optical spectra of solids,29 is sometimes termed "semiclassical" 
because of neglect of commutators of Tin and 9im, although the 
term "semiclassical" has a variety of other meanings (corre­
sponding to other approximations) in the literature. 

Calculations and Discussion 
We now proceed to consider quantum effects in four particular 

cases of chemical interest: the hexaamminecobalt and hexa-
ammineruthenium self-exchange reactions, the Fe2+/3+(aq) self-
exchange reaction, and the Fe2+-Ru(bpy)3

3+ cross-reaction. 
Hexaamminecobalt Self-Exchange Reaction. The large dif­

ference between the rates of self-exchange reactions 11 and 12 
has long been a matter of interest in the theory of electron-transfer 
rates. 

Co(NHj)6
2+ + Co(NHj)6

3+ -^* Co(NH3)6
3+ + Co(NH3)6

2+ 

(H) 

Jt1 < 10"12 M"1 s"1 at 25 0C4 

Ru(NHj)6
2+ + Ru(NHj)6

3+ -^- Ru(NHj)6
3+ + Ru(NHj)6

2+ 

(12) 

k2 = 103 M"1 S"1 at 25 0C30'31 

In the quantum theory described earlier, the rate constant 
involves the product of the square of an electronic exchange 
integral and a sum of Franck-Condon factors. It has been sug­
gested that the electronic factor for reaction 11 may be small 
because of spin multiplicity restrictions.1'5 Further, the Franck-
Condon term is much smaller for the Co reaction than for the 
Ru reaction because of the larger change in geometry from Co-
(NHj)6

2+ to Co(NHj)6
3+ (cf. Table I). 

Buhks et al.5 evaluated the Franck-Condon sums, G, for re­
actions 11 and 12, by using the saddle-point method described 
earlier. They found G(Co) « 7 X 10"18 cm and G(Ru) = 1.5 X 
10"10 cm so that the ratio of Franck-Condon sums contributes 
a factor of ca. ICT8 to the ratio k1/k2. But they also found that 
the classical vajue of G(Co)/G(Ru) was ~ 10~5. The gross dis­
crepancy between the classical and quantum values, a factor of 
1000, led them to suggest that G(Co) is heavily dependent on 
quantum effects. There is clearly some error in either the classical 
or the quantum Franck-Condon factors of ref 5 since tunneling 
effects should cause G(Co)/G(Ru) to be larger in the quantum 
case than in the classical one, yet a smaller value was found for 
the quantum case in ref 5. 

Actually, we have found that the large classical value of ref 
5 for G(Co)/G{Ru) is the result of using the inaccurate estimate 

(29) (a) M. Lax, / . Chem. Phys., 20, 1752 (1952); (b) R. Kubo and Y. 
Toyozawa, Prog. Theor. Phys., 13, 160 (1955); (c) K. Maeda, Phys. Chem. 
Solids, 9, 335 (1959). (d) D. Curie, "Luminescence in Crystals", Wiley, New 
York, 1963, p 47 ff. (e) T. F. Soules and C. B. Duke, Phys. Rev. B, 3, 262 
(1971). 

(30) T. Meyer and H. Taube, Inorg. Chem., 7, 2369 (1968). 
(31) G. Brown and N. Sutin, J. Am. Chem. Soc, 101, 883 (1979). 

(28.5 kJ/mol) of Stynes and Ibers1 for the hexaamminecobalt 
internal reorganization energy. The latter seem to have treated 
the bond length reorganization energy in the hexaamminecobalt 
ions as containing only diagonal terms '/2 H/-i6/r(^9/)2> where 
Aq1 is the displacement in the ith Cc-N bond length and/ is the 
Co-N bond force constant. But the reaction coordinate is actually 
the symmetric stretching normal mode, and when expressed in 
terms of bond modes cross-terms are obtained. The totally sym­
metric F matrix force constant FA is given in terms of generalized 
valence force field (GVFF) constants/by eq 13,32 where/, is the 

F^'fr+Vrr'+frr (13) 

diagonal force constant and f„ and /„' are off-diagonal force 
constants. / / denotes interaction between displacements per­
pendicular to each other. f„ denotes interaction between dis­
placements on the same line. The symmetric stretching nor­
mal-mode force constant F1 involves both the F and G matrix 
elements and equals FAl|/mL,32 where mL is the mass of one ligand. 
The bond length reorganization energy is33 '/4F1(Ag1)

2, where 
Ag1, the normal-mode displacement, is (6W1)

1Z2A(J,-32 (all six Aq/s 
are equal). Thus, this reorganization energy equals x j4Jt + 4/./ 
+ /rf)6(A^)2. It thereby involves both diagonal (/,) and off-di­
agonal (/„ and/,,') GVFF force constants, and the latter are almost 
as important as the former.34 Accordingly, we have made a 
comparison of the more correct classical value with the quantum 
sum, as well as with the semiclassical sum for G. 

In the high-temperature (classical) limit, the Franck-Condon 
factors usually depend mainly on modes in which the product 
potential is displaced in coordinate space relative to the reactant 
potential (i.e., X ^ 0). In the cobalt- and ruthenium-hexaammine 
self-exchange reactions only the solvent modes and the totally 
symmetric Alg internal modes have nonzero X's. Changes of 
frequency in the other modes would also make some contribution 
to G, of course, and as an example we include the modes of Eg 
and F symmetry later in quantum calculations of G. The ap­
proximate classical expression for G (eq 8) cannot treat modes 
for which X = O. 

Using the known Alg stretching frequencies (cf. Table I) for 
cobalt(II/III) hexaammine, we calculated the Alg symmetry force 
constants F111 and Fn (i.e., the FAl for oxidation states III and 
II) to be 2.45 X 103 and 1.28 X IfJ3 N/m, respectively. Using 
the average force constant of eq 9 and the Co-N bond lengths 
in Table I, we found the internal reorganization energy to be about 
48 kJ/mol35 (instead of the 28.5 kJ/mol calculated in ref 1). By 
analogous calculation, the ruthenium(II/III) hexaammine internal 
reorganization energy is found to be 2.5 kJ/mol. The total 
outer-sphere X's for the cobalt and ruthenium reactions have 
recently been estimated as 117 and 113 kJ/mol, respectively.5 

With use of these energy parameters, eq 8 yields as a classical 
result G(Co)/G(Ru) « 5 X 10"9 which is in reasonable agreement 
with the quantum result, both as given by Buhks et al. and as 
calculated below. 

In order to assess the accuracy of the saddle-point method for 
the hexaamminecobalt system, we compared the value of G ob­
tained by direct sum with that obtained by saddle-point integration. 
For simplified models consisting of only the Alg internal mode 
or of both the Alg and one of the two degenerate Eg internal modes, 
both the direct and saddle-point calculations have been performed. 
(For the Eg modes AQ1 is zero, if in the transition state each 
reactant has octahedral symmetry, but Aw1 is nonzero.) The results 
are given in Table II. At least for the models in this table the 
saddle-point evaluation is a very good approximation. 

(32) (a) C. W. F. T. Pistorius, / . Chem. Phys., 29, 1328 (1958). (b) K. 
Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination 
Compounds", 3rd ed„ Wiley, New York, 1978. 

(33) R. A. Marcus, ref 9a. See eq 4.3.8 (taking m = ' /2 and K," = fC,) 
and the discussion in appendix 2. Note that the internal reorganization energy 
Ae*; involves a sum over both reactants, in the case of the present self-exchange 
reaction. 

(34) K. Schmidt, W. Hauswirth, and A. Miiller, J. Chem. Soc, Dalton 
Trans., 2199 (1975). 

(35) The actual value calculated and used was 47.7 kJ/mol. 
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Table II. Franck-Condon Sums (G) 

system" 

Ru(NH3)6
2+/3+d 

quantum solvent, quantum internal 
classical solvent, quantum internal 
effective force constant6 

classical solvent, quantum internal 
classical solvent, classical internalc 

Co(NH3y+/3+e 

A1 g internal modes 
quantum solvent, quantum internal 
classical solvent, quantum internal 

direct 
sum 

1.04 
0.93 

1.02 
0.82 

20.0 
17.9 

saddle-
point 

1.08 
0.97 

1.02 

20.0 
17.8 

effective force constant6 

classical solvent, quantum internal 19.1 19.1 
effective force constant6 

classical solvent, classical internal0 4.4 
A1O and Eg internal modes 

classical solvent, quantum internal 15.6 15.6 
all internal modes 

classical solvent, quantum internal 3.3 

° "internal" refers to intramolecular degrees of freedom of 
reactants. Frequencies and displacements from Table I. 
° Effective internal frequency used (see eq 9). The saddle-point 
approximation is exact in this case. c Equation 8. d All values 
for G have been mutiplied by 109 cm"1. e All values for G have 
been multiplied by 1018 cm"1. 

Table HI. Franck-Condon Sums for Hexaaquoiron and 
Tris(bipyridyl)ruthenium Self-Exchange and Cross-Reactions 

reaction quantum classical semiclassical 

Fe2+-Fe3+ 8.5° 
Ru(bpy)3

2+-Ru(bpy)3
3+ 1.46 

Fe2+-Ru(bpy)3
3+ 2.5e 

kl2Kk ^k22K1J12Y"* 0.94 

2.4° 
1.4b 

1.5° 
1.00 

145° 
1.6b 

3.8C 

0.40 

° Multiplied by 1015 cm- Multiplied by 106 cm 
c Multiplied by 107 cm"1. d Cf. eq 17. Rate constants are from 
Table IV. kn,ki2, and kl2 are the rate constants for the 
preceding three reactions, in the order listed. 

For the complete hexaamminecobalt system consisting of all 
the frequencies listed in Table I (Ag, = 0 for the Eg and F modes), 
the direct sum was found to require excessive computation time, 
so only the saddle-point value of the Franck-Condon sum was 
calculated. Assuming that it is reliable, we find (cf. Table II) 
G(Co)/G(Ru) = 10-8, in agreement with the saddle-point method 
value in ref 5. 

Also listed in Table II are values of G calculated by using the 
two-frequency quantum solvent model described earlier and 
analogous values calculated by assuming wholly classical solvent 
interaction. As expected, the classical solvent model yields a 
slightly smaller value of G (less nuclear tunneling). The effect 
is small, about 10% in the systems considered. 

Hexaaquoiron(II/III) Self-Exchange Reaction. Like the hex­
aamminecobalt self-exchange reaction, the hexaaquoiron self-
exchange reaction proceeds with a large internal reorganization 
energy involving the metal-ligand internal modes. Using met­
al-oxygen symmetric stretching frequencies in the ferric and 
ferrous ions of roughly 490 and 389 cm-1, respectively,2 and a 
change in equilibrium bond length of 0.14 A,36 we calculated the 
internal reorganization energy to be 35 kJ/mol, when an effective 
single frequency of 431 cm"1, based on eq 9, is used. The out­
er-sphere reorganization energy has been estimated as 27 kJ/mol.2 

It has been suggested that in a system like this one, in which 
a high-frequency mode undergoes a significant bond length change, 
quantum effects should be large. But calculation of the sum over 
Franck-Condon factors yields a quantum value of about 3.5 times 
the classical value (cf. Table III). Thus, as in the hexa­
amminecobalt self-exchange reaction, no very large quantum effect 
on the Franck-Condon sum is observed. Indeed, the discrepancy 

NUCLEAR CONFIGURATION 

Figure 2. Curve similar to Figure 1, but for a nearly thermoneutral 
reaction (AE ea 0). Points a and b here are classical "turning points" 
of motion on the reactants' and products' potential energy curves, for the 
given energy E. Point c is at the intersection of the two potential energy 
surfaces. The actual nuclear tunneling distance is ab (Cf. ref 26). 

Table IV. Rate Constants For Hexaaquoiron and 
Tris(bipyridyl)ruthenium Self-Exchange and Cross-Reactions0 

vcalcd' ^calcd" 
reaction (quantum) (classical) 4 obsd 

Fe2+-Fe3+ 6.3 1.7 
Ru(bpy)3

2+-Ru(bpy)3
3+ 4.9 X 108 4.6 X 108 

Fe2+-Ru(bpy)3
3+ 1.4 X 108 8.4 X 107 

4.241 

1.2 X 10542 

7 X 10543'4" 
a Units are M"1 s"1. 

is smaller than the other uncertainties in the overall calculation 
of the reaction rates, and the quantum expression is more complex 
(cf. the cancellation of terms in the classical expression, leading 
to the simple cross-relation expression21 given below). 

The "semiclassical" result in Table III is seen to be in large 
error. It was shown in ref 26 that the semiclassical method 
corresponds, tacitly, to assuming that the nuclear tunneling dis­
tance along the abscissa is ac in Figure 2, whereas it is actually 
ab. This assumption is valid only when the products' curve at the 
intersection is very steep, for then point b =* point c, and so is 
valid when AE is quite negative. Identical remarks apply to the 
reverse reaction when -AE is quite negative and hence, by mi­
croscopic reversibility, to the forward reaction when AE for the 
forward reaction is quite positive. For AE =* 0 one concludes, 
since ac « ab, that the "semiclassical" tunneling rate will exceed 
the quantum one,26 a result confirmed in Table III (Fe2+-Fe3+). 
Related remarks apply to use of the semiclassical result in the 
so-called inverted region (|A£| » X), only now the semiclassical 
answer is too low, for now it was shown26 the actual nuclear 
tunneling distance is less than the tacitly assumed one.26 

Cross-Reactions. Quantum effects on the classical cross-rela­
tion37 are found below to be relatively small, in the "normal" AG0 

regime. In this relation, the rate constant k12 of 

A1(Ox) + A2(red) — A,(red) + A2(ox) (14) 

is related to those (ku, Ic22) of the self-exchange reactions (15) 
and (16) when the work terms are either small or nearly cancel, 

A1(Ox) + A^red) — A1(^d) + A1(Ox) (15) 

A2(Ox) + A2(red) — A2(red) + A2(ox) (16) 

via eq 17,21 where .K12 is the equilibrium constant of reaction 14 

k[2 =* (knk22Kl2fl2y/2 (17) 

and/12 is given by eq 18, where Z is the collision frequency in 

ln/1 2 = (In KnYf[A In {knk12/Z>)] (18) 

solution. Expressed in terms of the classical G's, this expression 
can be rewritten as eq 19, where 

G12 - [GnG22K^f12)
1/2 (19) 

(36) N. Hair and J. Beattie, Inorg. Chem.. 16, 245 (1977). (37) R. A. Marcus, /. Phys. Chem., 67, 853, 2889 (1963). 
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InJ12 = (In K12)2/[4 In (GnG22)] (20) 

G0 = (4TX1JkT)1Z2G1J (21) 

The classical results in Tables III and IV are those for a classical 
adiabatic result 

kij = ZG1J (22) 

where Z is defined above (and is taken to be 10" M"1 s"121,27). 
Equation 22 is valid when work terms for formation of the pre­
cursor and successor complexes are neglected and when nona-
diabaticity is negligible. To assess a quantum correction, we 
obtained the "quantum results" in Tables III and IV by using eq 
21 and 22 but with the Gy in eq 21 replaced by its quantum value. 
The "semiclassical" values in Table III were calculated by in­
troducing the semiclassical value of G1J into eq 21 and 22. From 
the results of Table III for the cross-reaction 

Fe2+ + Ru(bpy)3
3+ -> Fe3+ + Ru(bpy)3

2+ (23) 

one can see that the quantum effect on the calculated cross-re­
action rate (eq 17) is only a factor of 2 for reaction 23. The 
quantum effect on the cross-relation, i.e., on the ratio of the left-
to the right-hand side in eq 17, is calculated to be a factor of 0.94. 

In obtaining these results, the inner- and outer-sphere reorg­
anization energies for the Ru(bpy)3

2+/3+ self-exchange reaction 
were taken from ref 2: \inner m 0 and l/4 X011, =* 13.4 kJ/mol. 
The reorganization energies for the Fe2+Z3+ self-exchange are given 
above. The inner- and outer-sphere reorganization energies for 
reaction 23 were then estimated from the additivity rule27 to be 
17.6 and 20.1 kJ/mol, respectively. To allow direct comparison 
between the quantum and classical results, we employed the ef­
fective frequency 431 cm"1 for the Fe2+Z3+ symmetric stretch, 
according to the rule for effective force constants given by eq 9. 
The free energy of reaction for reaction 23 is readily calculated 
to be -47.3 kJ/mol from the reduction potentials of Ru(bpy)3

3+ 

(1.26 eV38"40) and Fe3+(aq) (0.770 eV22). 
The calculated self-exchange rate constants in Table IV agree 

reasonably well with the measured rate constants. However, the 
calculated values of the rate constant for the cross-reaction differ 
from the experimental value by 2-3 orders of magnitude. Several 
explanations for the apparent failure of the theory to predict this 
particular cross-reaction rate, when it predicts many others so well, 
have been offered:2'44,45 (1) large differences in the stability of 
the precursor and successor complexes, (2) nonadiabaticity, and 
(3) nuclear tunneling. Since the quantum and classical calculated 
rate constants are in good agreement, the third suggestion, nuclear 
tunneling, can now be eliminated, so that the discrepancy is 
probably due to 1 or 2. 

Conclusion 

We have shown that the Franck-Condon contributions to the 
rates of the hexaamminecobalt, hexaammineruthenium, and 
hexaaquoiron self-exchange reactions at 300 K can be reasonably 
well approximated by the classical expression (factors of 4.3, 1.2, 
and 3.5, respectively). These corrections are relatively minor, in 
view of the uncertainties in the various quantities involved in the 
rate expression. A nonadiabatic model was assumed, but anal­
ogous results would be expected for an adiabatic model. 

Also for these systems, we have seen by direct comparison with 
the exactly evaluated quantum sum of Franck-Condon terms that 

(38) J. Miller and R. Prince, J. Chem. Soc. A, 1048 (1966). 
(39) F. Lytle and D. Hercules, Photochem. Photobiol., 13, 123 (1971). 
(40) T. J. Meyer, Isr. J. Chem., 15, 200 (1977). 
(41) J. Silverman and R. W. Dodson, J. Phys. Chem., 56, 846 (1952). 
(42) R. C. Young, F. R. Keene, and T. J. Meyer, / . Am. Chem. Soc, 99, 

2468 (1977). 
(43) B. M. Gordon, L. L. Williams, and N. Sutin, J. Am. Chem. Soc, 83, 

2061 (1961). 
(44) J. N. Braddock and T. J. Meyer, J. Am. Chem. Soc, 95, 3158 (1973). 
(45) R. A. Marcus and N. Sutin, Inorg. Chem., 14, 213 (1975). 
(46) E. A. Moelwyn-Hughes, "Physical Chemistry", 2nd ed., Pergamon 

Press, New York, 1961, pp 347, 352. 

the saddle-point approximation is a very good approximation to 
the exact sum. The "semiclassical" approximation (eq 10) is a 
poor one for self-exchange reactions such as Fe2+-Fe3+. 

The quantum effect on the cross-reaction relation (eq 17) for 
hexaaquoiron(II) with tribipyridylruthenium(III) is negligible (a 
factor of 0.94), since some cancellation of quantum effects occurs 
in the calculation of cross-reaction rates. 

We conclude that a reasonable order of magnitude estimate 
for the contribution of configurational changes of high-frequency 
quantum modes in the first coordination layer, for typical met-
al-ligand frequencies, to the rate constant can be provided by a 
classical expression. Preexponential factors and activation energies 
are expected to be more sensitive to use of the classical approx­
imation (they are to other approximations also) and will be dis­
cussed in a subsequent paper. 
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Appendix 
Harmonic Oscillator Overlap Integrals. The overlap integral 

(n\m) is given by eq Al, where/and X are described in the text, 

(n\m) = ( - l ) m + " [2V? / ( l + f)]l/2(2m+nm\n\yi'2e-x^l+^ X 

LU / V U - t - / ; j , t j / ! ( W - / ) ! ( « - / ) ! 

(Al) 

f o r / < 1. "Hn is the Hermite polynomial of order «, and F„(x) 
= i"H„ (ix). (Eq Al is given, for example, in ref 14 and 15 
although with a few misprints.) F o r / > 1 one obtains for (n\m) 
an expression whose absolute value is the same as that of the 
right-hand side of eq Al. 

For the case X = O and f ^ 1, eq Al reduces to eq A2.13 

f tn r_igiT(A2) 
S2/!(» - l)\(m - /)! [ ( Z - I ) 2 J 

(2n + l|2w + 1) = 

y H V T 16/ I ' 

,=o(2/+ \)\(n-l)\(m - / ) ! [ < / - D2 J 

(2n\2m + 1) = <2n+l|2w> = 0 
The sums in eq Al and A2 are only formally infinite; they are 

actually terminated by the factorials in the denominators of the 
terms of the sums when / exceeds either m or n. 

Generating Function for the Saddle-Point Approximation. f(t) 
(eq 5 and 6) is found (using methods in ref 23 and 24) to be given 
by 

N 

f(0 = -JL[1Z2 In [sinh 20j sinh IaJ(W1 tanh fy + « / tanh aj) X 

(uj coth P1+ u/ coth a])/((J)JWj)] + 
2\jw//(hwj)/(o>j coth U1 + W1' coth fy)} (A3) 

The second derivative of f(?) is 
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f"(0 = -y2 ft
2L(coy2 csch2 2/3, + a;/2 csch2 Ia1 + 

coy'3 sech3 (XJ sinh a,- + coy3 sech3 /3y sinh /3y 

2(coy tanh/3,- + w/ tanh ay) 

(w/ sech2 /3y - OJ/2 sech2 ay)2 (co,'2 csch2 a;- - coy2 csch2 ^ ) 2 

4(co,- tanh /3,- + w/ tanh a ;)
2 4(coy coth fy + a>/ coth a,)2 

w/3 csch3 a; cosh ay + a>/ csch3 /3y cosh /3y 

2(w,- coth /3, + w/ coth ay) 

2\JW/2(U>/ csch3 a;- cosh ay + coy csch3 /3y cosh /Jy) 

ft (coy coth OCj + w/ coth /3y)2 

2\JUJ'3UJ (csch2 ay - csch2 /3y)2 

ft(coy cothay + wy' coth /3y)3 

where /V is the number of harmonic modes in the system 

ctj = y2 thu/t, \j = Y2O=MQj)2 

(A4) 

(A5) 

and coy, coy', and AQj are defined in the text. /0 is the saddle-point 
value of t, i.e., / such that 

O = P(O = Yi ih Z\coy coth 2/3y - co/ coth 2ay + 

coy2 sech2 /3y - coy'2sech2 ay co.'2 csch2 tXj - coy2 csch2 /3y 

2(aiy tanh /3y + w/ tanh ay) 2(coy coth /3y + coy' coth ay) 

2X,<oy'2(csch2 ay - csch2 /3y) 

ft(cOy COth ay + COy' COth /3y)2 
(A6) 

"Semiclassical" Franck-Condon sum. The "semiclassical" 
Franck-Condon sum (eq 10) may be derived from eq 1, the 
golden-rule expression for the Franck-Condon sum, using tech­
niques originally applied to other problems.29 Consider first the 
case in which a single normal vibrational mode, of frequency co, 
normal-mode force constant k = co2, and normal coordinate q, 
characterizes both the reactants and the products. The reactant 
Hamiltonian is 

ff, = p2/2 + kq2/2 (M) 

The products' Hamiltonian, in which the equilibrium value of q 
is displaced by an amount a, is 

5¥p = p1/2 + Yi Kq - a)1 + AE (A8) 

where AE is the reaction endoergicity. Equation 1 gives 

G = (/,g)-i£e-<"+1/2)W*7- C'Y. (n\m)(m\n) JVn-EMh dt 

(A9) 

where the Fourier integral representation of the 8 function has 
been introduced. Inserting the exponential in the coordinate 
integral and noting that the wave functions corresponding to \n) 

and |/n), Xn and xm>a r e eigenfunctions of "H, and ftp, respectively, 
one obtains 

G = ( / ,g)- i£e-C+ 1 / 2^/* r f °E(« |w)(w |^p ' / ' l e- w ' ' / ' l | n ) dt 

(AlO) 

If all commutators of ftT and ft„ are neglected, which is the 
semiclassical approximation in this approach, then29" 

giHptlhg-Mslh = ei(H,-H,)tlh (All) 

From eq A7 and A8 it is found that H^-ft,= -ka(q - l/2a -
AE/ka), so eq AlO becomes 

G = (hQ)-*Ze-<n+lt2)h»'kT C""(n\e-"ka^l'2a-&E'ka)\n) dt (A12) 

where use has been made of the identity 2~Ln\m)( m\ = \. Equation 
Al2 may be rewritten as 

G = (kahQYx Ze^n+'h)Hu/kT(n\d(q - y2a - AE/ka)\n) 

(A13) 

or simply 

G = {kahQ)-l2Ze<nJrXl2)h"lkT\Xn{(l*)\2 (Al 4) 
n 

where q* = x/2a + AE/ka is the value of q for which the reactant 
and product potential energies are equal. According to Mehler's 
formula,23 the sum in eq Al4 may be reduced to the single term 

G = (2irXhw coth y)~1'2 exp[-(A£ + X)2/2Xftco coth 7] 
(A15) 

where y = hu/2kTa.nd X = l/2ka2, and we have used Q= [2 sinh 
(ftco(2/tr»]-'.46 

Consider now a system having N normal vibrational modes, 
each characterized by a frequency coy and normal-mode force 
constant kj = w2. Let ay be the difference between the equilibrium 
values of they'th normal coordinate in the product and reactant. 
Define Xy = V 2 V / a n d ti = hoij/2kT. Gj(AE) is given by eq 
Al 5 for each mode individually. G(AE) for the TV-mode system, 
where AE is again the reaction endoergicity, is a convolution of 
the G/s (/' = 1, 2, ..., N). That is 
G(AE) = 

C... CG^UG^^G^AE - ±yj) dyw.dyN.i 
\J -CO %f - 0 9 . ' = J 

(A 16) 

Note that each Gj(y) is a Gaussian distribution in y. G(AE) is 
a convolution of the gaussians Gy. Therefore G(AE) is itself a 
Gaussian distribution and has a mean equal to the sum of the 
means of the Gy and variance equal to the sum of the variances 
of the Gj.*1 Thus G(A£) for an /V-mode system is given by eq 
Al5, but with X = Y,j=iN \ ar>d Xhw coth y = 2Zj=\N Xyftcoy coth 
7y. Explicitly 

N 

G = (ITEXJHUJ coth 7y)"'/2 exp[-(A£ + 
y - i 

EXy)2/(2ZXyftc0y COth Ty)] (A17) 
J=I J-I 

(47) A. Renyi, "Foundations of Probability", Holden-Day, San Francisco, 
1970, p 125, 208. 


